Lateral inhibition for center-surround reorganization of the frequency map of bat auditory cortex.

نویسندگان

  • Xiaofeng Ma
  • Nobuo Suga
چکیده

Repetitive acoustic stimulation, auditory fear conditioning, and focal electric stimulation of the auditory cortex (AC) each evoke the reorganization of the central auditory system. Our current study of the big brown bat indicates that focal electric stimulation of the AC evokes center-surround reorganization of the frequency map of the AC. In the center, the neuron's best frequencies (BFs), together with their frequency-tuning curves, shift toward the BFs of electrically stimulated cortical neurons (centripetal BF shifts). In the surround, BFs shift away from the stimulated cortical BF (centrifugal BF shifts). Centripetal BF shifts are much larger than centrifugal BF shifts. An antagonist (bicuculline methiodide) of inhibitory synaptic transmitter receptors changes centrifugal BF shifts into centripetal BF shifts, whereas its agonist (muscimol) changes centripetal BF shifts into centrifugal BF shifts. This reorganization of the AC thus depends on a balance between facilitation and inhibition evoked by focal cortical electric stimulation. Unlike neurons in the AC of the big brown bat, neurons in the Doppler-shifted constant-frequency (DSCF) area of the AC of the mustached bat are highly specialized for fine-frequency analysis and show almost exclusively centrifugal BF shifts for focal electric stimulation of the DSCF area. Our current data indicate that in the highly specialized area, lateral inhibition is strong compared with the less-specialized area and that the specialized and nonspecialized areas both share the same inhibitory mechanism for centrifugal BF shifts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reorganization of the auditory cortex specialized for echo-delay processing in the mustached bat.

Focal excess sensory stimulation evokes reorganization of a sensory system. It is usually an expansion of the neural representation of that stimulus resulting from the shifts of the tuning curves (receptive fields) of neurons toward those of the stimulated neurons. The auditory cortex of the mustached bat has an area that is highly specialized for the processing of target-distance information c...

متن کامل

Centripetal and centrifugal reorganizations of frequency map of auditory cortex in gerbils.

As repetitive acoustic stimulation and auditory conditioning do, electric stimulation of the primary auditory cortex (AI) evokes reorganization of the frequency map of AI, as well as of the subcortical auditory nuclei. The reorganization is caused by shifts in best frequencies (BFs) of neurons either toward (centripetal) or away from (centrifugal) the BF of stimulated cortical neurons. In AI of...

متن کامل

Art.-Rajan (Q)

Partial damage to the sensory receptor surfaces of the adult somatosensory1, visual2,3 or auditory4,5 systems causes reorganization of the topographic cortical maps that normally receive those inputs. For example, a small lesion within the retina does not permanently silence the cortical neurons that originally responded to that area of the visual field. Instead they acquire sensitivity to anot...

متن کامل

Plasticity of the cochleotopic (frequency) map in specialized and nonspecialized auditory cortices.

Auditory conditioning (associative learning) causes reorganization of the cochleotopic (frequency) maps of the primary auditory cortex (AI) and the inferior colliculus. Focal electric stimulation of the AI also evokes basically the same cortical and collicular reorganization as that caused by conditioning. Therefore, part of the neural mechanism for the plasticity of the central auditory system...

متن کامل

Development of reorganization of the auditory cortex caused by fear conditioning: effect of atropine.

Reorganization of the frequency map in the central auditory system is based on shifts in the best frequencies (BFs; hereafter, BF shifts), together with the frequency-response curves, of auditory neurons. In the big brown bat, conditioning with acoustic stimulation followed by electric leg-stimulation causes BF shifts of collicular and cortical neurons. The collicular BF shift develops quickly ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 92 6  شماره 

صفحات  -

تاریخ انتشار 2004